合作咨询热线:

400-123-4567

竞技宝JJB
联系我们

电话:400-123-4567

邮箱:admin@flevalve.com

地址:广东省广州市天河区天河路88号

您当前位置: 竞技宝JJB > 竞技宝JJB
竞技宝JJB40多位被访人告诉我们2020医疗AI发生的5大变化
发布时间:2024-02-05 17:32:17 浏览:[]次

  作为新基建的核心成员,AI可以为各个产业赋能,这意味着AI有着无限的市场潜力。医疗作为国民经济的重要组成部分,必然成为AI的用武之地。我国医疗AI经过多年的发展,2020年应用市场规模接近300亿元,过去5年CAGR超过40%,属于高增长行业,但这对于数万亿级的医疗市场来说,待挖掘的空间巨大。

  蛋壳研究院通过采访23位创业者、10位投资人、5位医务工作者、2位器械评审专家、调研20家企业,我们发现2020年医疗AI的五大变化:

  (1)变化一:由于新冠疫情突发,AI+公共卫生成为医疗新基建的重点,AI在疫情监测预警、影像筛查诊断、实验室检测、疫苗研发、医疗资源调控等方面积极发挥作用。

  (2)变化二:医疗影像步入深水区,AI企业通过构建多部位多病种筛查诊断服务或围绕单病种形成多流程管理服务来实现突围。

  (3)变化三:AI企业通过由AI影像系统、AI辅助诊断系统、AI辅助治疗系统构成的AI基层医疗服务综合解决方案赋能医疗体建设。

  (4)变化四:AI医疗器械审批的组织、制度、流程都在加速变革,已有5家企业获得医疗器械三类证,且还有10余家企业的产品正在认证审批中,2020年开启了医疗AI商业化元年。

竞技宝JJB40多位被访人告诉我们2020医疗AI发生的5大变化

  (5)变化五:AI企业从单打独斗向集成服务进阶,通过与影像设备商、信息化厂商、第三方医疗服务商、云服务商等不同生态主体合作,整合资源优势,为医疗机构提供集成化解决方案。

  2018年中央经济工作会议上提出了新基建的概念,从此“新基建”一词在媒体报道中时常出现。传统的基础设施建设主要集中在铁路、公路、机场等领域,因此,也称为“铁公机”。而“新基建”则更多集中于5G、人工智能、数据中心、工业互联网等科技创新领域基础设施,以及教育、医疗、社保等民生消费升级领域基础设施。

  2020年4月20日,国家发改委首次明确新型基础设施的范围,即新型基础设施是以新发展理念为引领,以技术创新为驱动,以信息网络为基础,面向高质量发展需要,提供数字转型、智能升级、融合创新等服务的基础设施体系。

  跨设施、多技术融合,面向四大主体助力医疗新发展

  医疗作为新基建建设的重要领域,可以充分利用相关设施和技术来加快自身的创新发展。可以看到,AI是新基建的重要构成要素,需要从如下3个方面在医疗领域取得突破:

  AI是技术设施的组成内容,除了需要与云计算、区块链等技术设施进行融合,还需要与5G、物联网、互联网等通信设施,数据中心、计算中心等算力设施进行融合。如AI同云计算融合,云计算平台可以根据授权在云中收集、存储和分析电子病历、检验检查、临床诊断等数据,为AI模型训练提供大量优质的数据支持,打造更好的医疗AI产品。AI可以同5G融合,将诊断功能下放到有通讯条件的基层地区,提升基层医生的诊断治疗水平。AI也可以与数据中心、计算中心融合,利用强大的算力支持,开发单器官全病种的应用。

  从当前阶段来看,5G、AI、云的融合还未为医疗领域带来颠覆式的改变。5G的优势在于加速单位时间内AI可分析的数据量,云的作用在于帮助AI突破单一设备的限制,通过AI上云的方式可以让其连接更多终端。云与AI的结合早已在诸多医联体开始应用,尤其是新冠时期,基于医联体的远程CT辅助诊断。通过这一方式,患者无需往返于大医院,仅在符合要求的基层医联体机构便可完成检查与诊断。这将有效分诊患者,降低三甲医院的工作负荷,减少患者往返医院时发生的感染事件,患者通过手机便可接收影像诊断相关信息,这将有效推进我国主动预防型公共卫生防控体系的建设。

  对于医疗而言,物联网的价值在于能够将医疗数据的搜集从单一有限的医院延伸至居家、健身、旅行等每一个场景。对于医院而言,这些冗杂、琐碎的数据没有太大的价值,但对于特定的健康管理企业而言,经过清洗的数据能与患者的健康状况挂钩,并可基于此帮助患者完成疾病监控。AI的介入可以帮助企业跟据患者身体情况完成模型的自适应,有效提高多模态数据的分析能力,进而提升相关应用分析的准确程度,同时降低单个用户的服务成本。基于这一高效的数据分析能力,健康管理企业能够与用户建立起实时、高频的联系,进而延伸为社群。社群运营商可以寻找药企进行相关的合作,这一模式正广泛应用于糖尿病管理、心血管病风险管理等场景。

  AI赋能医疗的发展必须是向多主体提供智慧服务,面向医疗机构的智慧医院建设,涉及患者、医疗(包括门诊、住院)、护理、医技(含药事)、管理(含行政、业务)、后勤保障、教学科研、区域协调等领域的智慧化建设,是一个系统性的工程。

  面向监管机构的智慧监管建设,涉及医疗数据、医疗行为、医疗费用、医疗人事等方面的监管,AI需要助力实现医疗数据的隐私保护和权限分配,医疗行为的科学性和合规性,医疗费用的合理性和真实性以及医疗人事组织的灵活性。

  面向产业生态的智慧服务,为医药企业提供临床研究、注册申报、真实世界研究服务,助力器械企业研发医疗AI设备,为互联网医疗企业提供智能问诊、智能续方、智能患者管理服务,为保险企业提供智能分销、智能定价、智能理赔服务,为药店提供智能采购、承接处方、患者管理服务,为第三方医检企业提供影像、病理辅助诊断服务等。

  面向患者的智慧管理建设,包括健康管理、在线复诊、慢病管理、康复护理、在线购药等服务。

  以往大部分AI产品都选择落户大三甲医院,因为这里有更多的医疗数据资源、更好的医生团队、更强的付费能力。但从中国医疗资源分布的现状看,基层才是更需要AI赋能的地方,基层医疗基础设施薄弱、医生人才匮乏、诊疗水平低下,通过AI可以辅助基层医生进行疾病诊断、疾病治疗、患者管理,缓解医疗资源分布不均衡的问题。因此,AI在为大三甲医院赋能的同时,更需要向基层赋能。AI在不同层级医疗机构的功能应该是差别化的,针对大三甲医院,主要是规范诊疗流程,减少漏诊,减轻医生的工作负担、提升医院的科研实力;针对基层医疗机构,主要是提升医生的诊断水平,减少误诊,覆盖更多的疾病以及做好患者管理,让患者留在基层。

  公共卫生一直是我国医疗健康卫生事业建设的重点,包括对重大疾病尤其是传染病(如结核、艾滋病、SARS、新冠肺炎等)的预防、监控和治疗,对食品、药品、公共环境卫生的监督管制,以及相关的卫生宣传、健康教育、免疫接种等。

  2010-2018年我国政府卫生投入情况(亿元),数据来源:中国卫生健康统计年鉴

  2018年,政府公共卫生建设投入已经达到1243.32亿元,10年间增加了2.14倍,而且公共卫生建设投入占卫生总投入的比重也呈现上升趋势。但从公共卫生投入占卫生总投入的比重看,公共卫生建设任重而道远。

  公共卫生是医疗新基建覆盖的重要领域之一,特别是今年突发的新冠疫情,将公共卫生建设推入了快车道,多个省份提出的补短板建设三年计划中都将公共卫生建设纳入重点建设项目,从各省市公共卫生防控体系建设的内容看,AI可以在以下5个方面发挥重要作用:

  基于传染病大数据构建传染病监测模型,可以对传染病传播路径进行还原,追溯病毒源头;对传染病患病群体进行动态追踪并自动提醒,划分出疾病高风险区;而且还能对传染病的未来发展趋势进行模拟预测,相关防控部门可以进行提前部署。

  影像筛查诊断是医疗AI的主要功能之一,基于AI的图像识别、算法模型等,能够提升影像科医生阅片的速度和准确性,及早筛选出疑似病例并进行隔离治疗,降低扩散传播风险。

  AI在实验室检测的应用包括基于数字图像的细胞检测、形态定量分析、组织病理诊断和辅助预后判断等多个方面。在计算机重建细胞形态过程中,在压缩波形上应用机器学习而不用进行图像重构,实现高效的基于图像的无形态学细胞检测。在组织病理诊断过程中,通过开发基于不同细胞病理方向的AI分析模块,可以辅助诊断不同的肿瘤分型。

  AI算法可以加快病毒识别、药理分析、候选物筛选、临床试验等。例如在本次新冠疫苗研发期间,LinearFold算法为全世界100多家新冠病毒研发机构提供技术助力,新型冠状病毒的全基因组二级结构预测从55分钟缩短至27秒,提速120倍,极大提升新型冠状病毒RNA空间结构预测速度,缩短疫苗研发周期。

  医护资源、床位资源、物资资源在疫情防控中需要动态调配,满足不同地区、不同医疗机构的战时需求。AI可以实时反映医护人员工作负荷、空余床位数、检验设备数量,结合对各地疫情变化情况的实时追踪,为医疗资源动态调配提供决策支持。

  医学影像是AI在医疗领域应用最多且最成熟的场景。我国一年医学影像的检查量超过75亿人次,根据火石创造《医疗影像的市场图谱和行业发展分析》报告分析,2020年我国医学影像市场规模将达到6000~8000亿人民币。庞大的检查量带来的是影像数据的快速增长,目前影像数据的年增长率达到30%,而同期放射科医生的年增长率仅为4%,形成较大的供给缺口。放射科医生的短缺造成误诊率偏高,根据中国医学会公布的误诊数据,恶性肿瘤平均误诊率为40%、肺外结核的平均误诊率在40%以上,高出临床医疗总误诊率12个点。同时,医学影像数据可获得性较强、易标注、标准化程度相对较高等特点,大大降低了AI的应用门槛。因此,医学影像成为AI目前的主要应用市场。

  动脉橙数据库显示,截止2020年7月底,国内医学影像+人工智能的企业数量达到89家,从影像辅助决策应用分布看,72%的企业涉及肺结节,53%的企业涉及眼科,成为影像检查应用最多的两个场景。

  这主要是因为CT影像的清晰度越来越高,检查量也越来越大。同样眼底筛查人群规模大,仅糖尿病人群就超过3亿,且眼底相机的普及率高,基层医疗机构基本都配备。另外,二者的数据量大、标注难度较小,AI企业在这两个场景进入门槛低,最容易出产品。大量的企业扎堆涉足肺结节和眼底筛查,推出相关产品,同质化现象严重,但真正能进入医院获得收入的不到10家。

  蛋壳研究院整理了过去5年AI影像领域的融资事件数(2020年统计到9月15日),整个融资事件数呈现倒U型走势。AI影像领域融资热潮在2018年达到顶峰,随后出现急剧性下跌,2019、2020年的同比降幅均超过50%,这说明AI影像的融资热潮已退却,投资机构对AI影像创新企业的筛选更加谨慎。

  究其原因,一方面是AI影像扎堆,大家的产品和服务同质化严重,后进入的企业较难获得投资机构青睐;另一方面,投资机构更趋向于有产品过审或在审的企业,这些企业未来可进入医院的招标采购,投资回报更有保障。

  A轮融资是行业发展阶段的分水岭,行业内大部分企业处于A轮系列及以后轮次融资,表明行业产品或服务体系已经得到市场认可,有比较成型的商业模式,在市场上企业之间开始展开竞争。从2020年获得融资的AI影像企业情况看,其融资轮次都在A轮及以后,说明AI影像行业进入发展期,企业将加快进行产品认证申请,以便在市场竞争中获得优势。

  面对同质化的竞争市场,医学影像企业必须突围,跳出深水区,走差异化发展路线。可以通过如下两个方向,形成差异化发展优势:一是多部位多病种筛查诊断,如产品覆盖胸部、眼部、头部、颈部等多个部位、多个器官的筛查诊断;二是围绕单病种形成多流程介入管理,如围绕心血管病,形成筛查、诊断、治疗、康复等多环节管理。

  AI的应用主要集中在医学影像和辅助诊断环节,为了更好地发挥AI在医疗领域的作用,需要在目前的应用场景上进行拓展,包括院内场景拓展和院外场景拓展。

  针对靶区勾画,AI基于大量三维、大尺度和高质量的影像数据、靶区数据以及专家经验数据,能够做到全自动化器官分割,只需要2-3分钟就能出结果(医生手动描绘耗时2-3小时),满足临床医生90%的需求,且整个勾画过程都是按照模型设定的路径,有利于消除医生之间的个体化差异。对于术前规划,AI算法能够对影像上的器官和血管进行快速分割、三维重建,医生可以在虚拟现实环境中对器官、病灶及内部复杂的解剖结构做出个体化、全量化的分析,让术前规划更精准。且在手术过程中,AI能将患者影像数据和实际解剖结构准确对应,利用VR、MR、导板等技术,通过三维数字建模及算法优化,对病灶进行精准定位。手术机器人则是基于AI强大的视觉识别能力,结合3D立体视觉和机械臂自由度,达到定位准确、移动灵活,辅助医生更好更快地完成手术。

  AI基于对大量临床指南、医保政策等数据的学习,构建医疗费用审核模型,对于提交的医疗费用数据进行匹配分析,筛出不合理的单据交由人工复核,为合理控费提供支撑。同时,凭借积累的医学知识图谱和算法,能够全方位分析被保险人的发病率、检查检验频次、再次住院率、用药情况、康复效果等内容,综合得出其风险等级,保险公司据此推出个性化产品及收费方案。再结合大数据风控模型和保险理赔规则,根据客户发生的风险类型和伤害程度计算理赔金额,加快赔付流程。

  在病历管理方面,NLP结合知识图谱,可以处理大量复杂的病历文本信息,并通过对病历管理制度的学习,搭建病历管理智能化系统,对未及时录入病历的医生进行到期提醒,标注病历录入漏掉内容,如果病历录入不一致或不合规,给与及时报警,保证病历录入质量。

  AI应用其强大的发现关系能力和计算能力能够挖掘那些不易被药物专家发现的隐性关系,构建药物、疾病和基因之间的深层次关系;能够对候选化合物进行虚拟筛选,更快地筛选出具有较高活性的化合物;能够从海量的临床试验数据中提取相关信息,将试验结果与病人情况进行自动配对,加快试验入组,并设计最优临床试验方案,缩短临床试验时间等。

  AI基于对体温、血糖、血压、血氧饱和度、心率等体征数据在不同数值所表示的体征情况进行深度学习,形成疾病风险识别算法模型,通过将设备采集的数据与关键定量指标进行对比分析,识别潜在疾病风险。同时,AI通过NLP对大量慢病科普数据进行分析处理,可以为不同慢病类型患者推送定制化医学知识,方便患者自我学习。而且AI还可以对慢病患者的饮食、运动、睡眠、用药等行为进行动态监测与分析,对慢病患者的健康状态给与评价,帮助他们纠正不合理的行为,降低慢病恶化的风险。

  AI可以依据随访要求定制随访模型,通过语音交互、视觉交互、手势交互等技术,实现人机问答,并且能够将随访数据进行分析处理,形成结果辅助医生决策。针对需要复诊的患者,AI可以依据患者的随访情况自动匹配相应的科室和推荐复诊时间。

  AI基于疫情大数据构建疫情监测模型,对死亡人数、确诊人数、疑似人数等数据进行动态跟踪分析,形成疫情地图;同时还能对确诊或疑似患者的行动轨迹实现还原,圈定可能的接触人群,实现有效隔离。而且通过AI构建的疫情风险评估模型,能够根据各地的疫情数据、个人的体温数据情况,做出风险评估,筛选出高风险区和高风险人群。

  分级诊疗的本质是整合医疗服务的需求入口,通过小病进基层、大病进医院的服务方式,使得各级医疗服务机构能够更好地发挥自身应有的价值,提高医疗体系的整体服务效率。而医联体就是落实分级诊疗体系的重要举措。

  2016年8月,卫计委(现为卫健委)在《关于推进分级诊疗试点工作的通知》中设定了医联体建设具体推进目标:到2020 年,在总结试点经验的基础上,全面推进医联体建设,形成较为完善的医联体政策体系。所有二级公立医院和政府办基层医疗卫生机构全部参与医联体。医联体建设以县域医疗共同体(医共体)、城市医联体(城市医疗集团)为重点。截止目前,我国县域医疗共同体有3346个,城市医联体有1408个。

  县域医疗共同体是以县级医院为龙头、乡镇卫生院为枢纽、村卫生室为基础的县乡一体化管理模式,与乡村一体化有效衔接,形成县乡村三级医疗卫生机构的分工协作机制。城市医联体以三级医院为牵头单位,联合若干城市二级医院、社区卫生服务中心等,构建“1+X”医联体,纵向整合医疗资源,形成资源共享、分工协作的管理模式。

  医联体的核心工作是要提升基层医疗机构的医疗服务能力,这为AI与医联体的结合提供了良好的发展契机。通过构建由AI影像系统、AI辅助诊断系统、AI辅助治疗系统构成的AI基层医疗服务综合解决方案,为城市二级医院、社区卫生中心、乡镇卫生院、村卫生室等基层医疗机构赋能。

  如前所述,影像筛查、疾病诊断、疾病治疗、费用支付、医院管理、药物研发、慢病管理、疫情防控等医疗场景都需要AI发挥作用,因此,临床需要获批拿证的AI产品。这些需求倒逼政策和监管创新,加速AI产品的审评审批。蛋壳研究院整理了AI审评审批相关政策,并做了系统性梳理。

  AI医疗器械的审批创新最早可以追溯到2014年,当时CFDA印发《创新医疗器械特别审批程序(试行)》政策,鼓励推进AI医疗器械的审批进度。

  到2018年年初,中国食品药品检定研究院以《医疗器械软件注册技术审查指导原则》、《移动医疗器械注册技术指导原则》、《医疗器械网络安全注册技术审查指导原则》三个原则作为建库基准,最终建立了包含6327例数据的眼底影像标准数据库与包含623例数据的肺部影像标准数据库,其标准化流程可以说是走到了世界的前面。借助标准数据库与相关标准流程,中检院可以实现对AI产品进行审评审批。

  但迫于时代的局限性,这个数据库并没有沿用太久。背后的原因主要有以下几点:其一,数据来源于医院与企业的共同标注,由于当时缺乏数据行业标准,各家企业提交的数据差异太大,与真实世界情况发生偏移;其二,在测评过程中,企业既是数据的提供方,又是数据的考核方,其结果难以保证绝对的公平公正。当然,数据量、数据安全、数据利益归属等问题也一定程度上阻碍了这项工作的后续发展。因此,也没有企业成功通过这一数据库获批产品。

  产品的逐渐成熟与审批的迟迟不过使得AI企业进退两难,一方面,AI产品形态确乎是医院科室未来不可缺少的一部分;另一方面,审批的阻碍导致企业缺乏有效的变现手段,持续的融资并非长远之计。

  2019年6月起,NMPA开始频繁在医疗AI的标准制定上展开动作。6月29日,NMPA正式向AI企业发布了审批相关文件《深度学习辅助决策医疗器械软件审批要点》,以文件的方式将审批相关的具体指标确立下来。

  在2019年7月17日,人工智能医疗器械创新合作平台的成立以及随后在博鳌举办的人工智能医疗器械创新合作平台会议对创新平台组织架构进行了扩充,至此,AI医疗器械的审评审批有了权威的组织,确保审评审批的公开性和公平性。在今年的世界人工智能大会上,人工智能医疗器械创新合作平台发布了包括医疗人工智能测评公共服务平台、糖尿病视网膜病变常规眼底彩色照相AI标准数据库、《基于胸部CT的肺结节影响辅助决策产品性能指标和测试方法》、《基于眼底彩照的糖尿病糖尿病视网膜病变辅助决策产品性能指标和测试方法》等多项成果。

  2020年7月WAIC(世界人工智能大会)大会上,人工智能医疗器械创新合作平台再发新进展。大会上,平台发布了包括医疗人工智能测评公共服务平台、糖尿病视网膜病变常规眼底彩色照相AI标准数据库、《基于胸部CT的肺结节影响辅助决策产品性能指标和测试方法》、《基于眼底彩照的糖尿病糖尿病视网膜病变辅助决策产品性能指标和测试方法》等多项成果。简而言之,本次发布一次性涵盖了数据库、平台、标准三个要素,第三方测评从结构上看已经可以实现,AI审评审批的推动力发生了质变。

  AI医器械三类证的申报流程包括注册申报资料准备和审评审批两个环节,总计11个部分,医疗器械注册是一项行政许可制度,是NMPA根据医疗器械注册申请人的申请,依照法定程序,对其拟上市医疗器械的安全性、有效性研究及其结果进行系统评价,以决定是否通过其申请的过程。结合前面AI医疗器械审批创新进程,可以将审评审批要点的变化分为3个阶段。

  该阶段AI医疗器械申报以分类管理为基础,以风险高低为依据,确定医疗器械注册与备案的具体要求。在分类管理方面,按照应用范围不同,将深度学习辅助决策医疗器械软件细分为医疗器械数据、深度学习、辅助决策、医疗器械软件;按照软件独立性特点,分为AI独立软件(本身即为医疗器械的AI软件)与AI软件组件(医疗器械内含的AI软件)。在风险考量方面,包括假阳性、假阴性的临床使用风险管理,而且设置了风险管理的要素、措施和要求。

  该阶段的核心在于对数据库的建立进行深入探讨,具体包含数据库建立方向、建库模式、建设目标、平台服务模式、数据库监控五个方向。而且人工智能医疗器械创新合作平台会议提到的8种测试样本数据库,包括CT肺、CT肝、CT骨折、脑MRI、心脏MRI、冠脉CTA、心电、眼科,其中糖网AI标准测试数据库已由北京协和医院建成。

  该阶段由于新冠肺炎疫情对于医疗AI辅助诊断的新需求,国家药品监督管理局医疗器械技术审评中心(CMDE)印发了《肺炎CT影像辅助分诊与评估软件审评要点(试行)》政策。政策明确了肺炎CT影像辅助分诊与评估软件按照三类证进行管理,且要求相关软件功能至少包含异常识别、量化分析(如病灶体积占比、CT值分布等)、数据对比(手动、自动均可)、报告输出等功能。此外,政策还对AI模型训练数据的数量、数据来源以及整个临床试验设计都做出了细致的规定。

  蛋壳研究院通过搜集在NMPA、CDME官网发布的相关数据,共计整理5个获得三类证的AI医疗器械产品,它们的应用场景涉及心血管疾病、颅内肿瘤、糖尿病3类疾病应用场景。

  从结果来看,科亚医疗、Airdoc、硅基智能三家企业均通过绿色通道之后获得了三类证审批,对于企业而言,想要加速审批流程,绿色通道或许是个不错的选择。

  现有的许多影像设备——CT、MRI、彩超、心电、脑电、X光等——都或多或少地应用了AI,但是要让AI真正发挥作用,企业绝对不能陷入“一个功能等于一个产品”的陷阱。例如患者出现发热头疼的时候,医生实际上不能判断患者患病的具体情况。患者做了MRI后,如果只是单一功能的产品,如脑出血检出,并不能满足医生的要求,医生需要至少针对某一部位“全病种”的AI产品。这是发展趋势,也是企业设计临床实验的可选路径之一。从现有情况来看,能够诊断多部位、多病种的产品才能符合医院的需求,进入审批流程。

  从现有的算法机制来看,如果用基层医疗的有效数据培养AI产品,那么这个AI产品的最高水平只可能停留在通用于基层医疗,无法向大型医院延伸。对于乳腺癌、脑肿瘤等疾病的诊断,不同层次的医院相差太多,如果随意选用数据,很可能训练越多,准确性越差。所以,医疗AI要想在三甲医院落地,必须使用顶级医院的高质量数据,深度学习顶级专家的“金标准”临床经验,才能保证AI的准确性。

  过去很长一段时间,AI的医疗门槛或许没有那么明显——只要能够获得高质量的数据,企业便能后来居上,如今一切都已改变。很多AI企业发现,当我们逐渐向全病种迈进时,单任务的深度学习算法已经无法应对需求,多任务算法将是大势所趋。所以,除了继续争夺高质量、有效的AI数据,下一阶段,医疗AI企业必须在算法层面寻找突破。

  大部分医疗AI产品所谓的“落地”,仅仅是将软件安装于医院某科室、与器械厂商完成接口对接、与药企达成合作……但距离商业化,仍然存在一定距离。因此,我们将这个阶段称之为产品投放阶段,也是医疗AI野蛮生长阶段。

  产品投放阶段最早可追溯至蓝色巨人IBM旗下的Watson机器人,在这个阶段,钻研医疗AI的研发人员几乎都不是医疗出身,因此,设计出来的产品与医疗真实需求出现错位,存在非常大的改进空间。医疗AI产品进入医院,主要是为了使用医院相应的临床数据,完成产品测试,以寻求下一阶段的迭代方向。所以,科研合作成为企业产品落地的主流商业模式,辅以渠道代理和医院关系,如企业成立论文团队,协助信息科、影像科医生完成SCI论文。2015年兴起的医疗影像辅助诊断软件即以该商业模式为主,即初期产品进入医院,使用大量经过医院医生标注过的影像数据,对AI影像辅助诊断软件进行训练,完成初期产品的打磨。但这个时候打磨的产品局限在某个环节的需求,意味着相应的AI产品只具备某一特定功能,而不能较好地满足医生的临床需求。

  随着与医院合作交流逐渐变多,企业开始理解医院的真实需求,并以此为核心重新制定产品研发策略。在这个阶段,越来越多的医疗领域专家开始进入AI企业任职,互联网思维下的AI与临床医学开始真正融合,医疗专家凭借多年的临床实践经验,深知医院需要什么样的AI产品。AI专家具备长期的技术积累,在方向明确的前提下,能够通过技术手段设计出相应的产品,实现产品研发以临床需求为导向,医疗专家与AI专家产生了良性化学效应。

  时至2018年,诸多AI产品经过长时间的打磨,已经趋于成熟,企业的经营理念也发生了改变,在前期大量投放产品,铺设医院的基础上,尝试做落地产品的运营。

  触发这一阶段的因素很多,除了产品的成熟外,政策的推进在很大程度上促进了医疗AI由野蛮生长向精耕细作过渡,开始朝着以运营创营收的阶段迈进。如审批政策的创新加快了AI产品的获批。目前,已有5款产品获得医疗器械三类证,还有多款产品正处于审评审批通道,有望在年内获批拿证。如电子病历评级和互联互通评级,都要求医院向智慧医院转型,即医院内实现全院信息共享,并具备医疗决策支持功能,加快了医院对于临床辅助决策系统(CDSS)的建设,而AI与CDSS的结合有利于CDSS更好地满足相关政策要求。虽然传统的CDSS系统能够在一定程度上满足评级需求,但AI+CDSS对于4、5、6级电子病历评级显然更具优势。利用深度学习、NLP、知识图谱等AI技术,在疾病的诊疗过程中,实现医学知识智能查询、相似病案推荐、检查检验推荐、治疗方案推荐等辅助功能,多层次支持医疗决策。因此,政策实际上推动了AI+CDSS走向商业化,加之各地卫健委对于分级诊疗的逐渐重视,基层版的AI+CDSS也为AI企业带来另一片蓝海市场。

  在这个阶段,绝大多数企业通过简单的产品投放难以获得持续稳定的收入,需要转变经营理念,注重精细化运营。企业需要向医院派驻专业的运营团队,指导医生如何更好地使用产品;针对医生在使用产品过程中遇到的问题,要建立快速响应机制,提出解决方案。竞技宝官网

  在医疗AI的早期发展阶段, AI企业、医疗设备商、信息化厂商、云服务商等产业参与者彼此割裂。单打独斗造成AI企业对行业认知不足、数据获取来源和数量有限、产品销售渠道单一。

  医疗AI行业经过几年的发展,竞争的主赛场正在由“单打PK”逐渐变为“抱团竞技”。企业需要形成整合资源、优势互补、抱团取暖的意识;应该转变观念、找准定位、通过平台模式实现协同发展;应当跨界合作、共同创新,降低创新成本和风险。各个医疗AI企业正在与影像设备商、信息化厂商、医疗服务商等建立合作关系,形成新搭档来参与行业竞争。

  影像设备商利用自身硬件设备、医院资源、市场渠道等优势搭建生态平台,医疗AI企业通过参与遴选入驻平台,成为生态平台的开发者和应用者。通过对相关影像设备商AI平台建设情况的梳理,目前主要以国内大型医疗设备商和影像研究机构为主。

  产品需求阶段:影像设备商分发客户对AI产品的需求,AI企业根据自己的产品定位和技术优势,从生态平台认领需求进行产品研发。

  产品研发阶段:对接医院资源,影像设备商在医疗行业深耕多年,拥有大量的优质医院客户。在AI模型的训练中,可以对接不同区域、不同类型的医院,这些医院为AI企业提供大量数据。而且这些医院拥有大批专家资源,可以为数据提供标注服务,帮助AI企业研发出泛化能力较强的AI产品。

  产品验证阶段:影像设备商的医院客户可以成为AI产品的首批试用者,它们的患者群体规模大,产品将应用到不同病情的患者,然后去验证它的准确度。最后,医院再将试用过程中出现的问题和试用结果反馈给AI企业,帮助企业更好地进行原型产品的升级迭代。

  产品销售阶段:影像设备商具有完善的产品销售渠道,AI企业可以借助这些渠道开展产品销售,既提高了企业的产品销量,同时又节约了渠道开发和渠道代理成本,增加了企业利润。

  医疗AI企业通过与影像设备商合作,可以共享它们的客户、合作伙伴、销售渠道等资源竞技宝JJB,为产品需求、产品研发、产品验证和产品销售寻求闭环服务。

  医疗AI企业将深度学习、图像识别、NLP、知识图谱等技术与医院信息化厂商提供的信息化系统相结合,可以增强信息化系统的数据分析能力和信息决策能力,将大大提高信息化系统的运行效率。

  通过开放接口,将AI系统与PACS、CDSS、HIS等信息化系统实现对接,让AI具备的核心能力能够融入到信息化系统日常运行中。具体可以实现如下4方面服务:

  AI+PACS:PACS是进行医学图像的获取、显示、存贮、传送和管理的综合系统,AI可以实现影像分割、器官勾画、阅片筛查、竞技宝官网影像质控等,提高阅片的效率,减轻医生的工作负担。

  AI+CDSS:CDSS运用可供利用的、合适的计算机技术,针对半结构化或非结构化医学问题,通过人机交互方式改善和提高医疗诊断决策效率的系统。AI能够大量处理非结构化数据,形成知识图谱,为医生提供知识查询、相似病案推荐、辅助诊断等,还可以对医生的诊断流程进行规范提醒,提高诊断的规范性和准确性。

  AI+患者管理:患者管理也是医院信息化建设的重要内容之一,包括诊后随访、医嘱管理、慢病管理、患者咨询等。AI可以与患者进行智能问答,解答患者常规疑问,更好地帮助患者进行自我管理,节约医生患者管理时间,医生的主要精力可以更多地放在疾病的诊治上。

  AI+HIS:HIS主要是利用电子计算机和通讯设备,为医院所属各部门提供病人诊疗信息和行政管理信息的收集、存储、处理、提取和数据交换的能力,并满足所有授权用户的功能需求。AI可以在收费划价方面提供智能核准、费用结算等;AI还可以根据DRGs相关规定,对诊疗项目和收费进行智能监控,减少过渡治疗现象的发生。

  第三方医疗服务企业主要是指与AI企业合作共同为医疗机构或个人提供医疗服务的企业。它们主要提供疾病诊疗服务、医药服务、健康体检服务、健康管理服务、医院管理服务、药物临床试验服务等,而AI企业则主要基于语音识别、图像识别、NLP、知识图谱等技术,为医疗服务企业赋能,提高服务的质量和效率。

  能够让医院成为付款方固然是上乘的选择,但从实际来看,基层医疗场景才能让AI发挥出它们真正的价值。从现在影像类AI的产品设计思路来看,其最低付费方可下达至县级医院。阻碍AI继续向下延伸的因素有两个,首先是基层的影像工作者有限,少有具备阅片能力的影像工作人员可以留在基层。更为重要的是,基层医疗机构没有资金实力为企业付费。

  以上为《医疗AI创新的道与智:回归需求,整合价值》报告节选内容,报告中我们还对医渡云、灵医智惠、深睿医疗、猎户星空、睿心医疗、HLT(开心生活科技)、科亚医疗、德尚韵兴、医准智能、数坤科技10家医疗AI企业进行案例解析。报告完整框架如下,进入动脉网官网或者关注动脉网智库小程序,即可免费阅读报告全文:

扫码关注竞技宝JJB

服务热线

400-123-4567

邮箱:admin@flevalve.com
地址:广东省广州市天河区天河路88号